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Abstract. When reusing existing ontologies, preference might be given
to those providing extensive subcategorization for the classes deemed im-
portant in the new ontology (focus classes). The reused set of categories
may not only consist of named classes but also of some compound con-
cept expressions that could be viewed as meaningful categories by human
ontologist. We define the general notion of focused ontologistic catego-
rization power; for the sake of tractable experiments we then choose a
restricted concept expression language and a map it to syntactic axiom
patterns. The occurrence of the patterns has been verified in two ontol-
ogy collections, and for a sample of pattern instances their ontologistic
status has been assessed by different groups of users.

1 Introduction

Reusing parts of existing semantic web ontologies when designing a new one,
or when merely proposing the schema for an RDF dataset to be published, is
commonly understood as best practice. With the growing number of ontologies
on the semantic web it also becomes more likely to find multiple ontologies cov-
ering the given topic. However, mere thematic relevance may not be enough:
since the target ontology/schema is to be used in a certain application context,
it should exhibit features required in this context. For example, if a reasoner is
to be applied on the ontology, its expressiveness should not exceed that expected
by the reasoner. In this paper we investigate one more structural feature of on-
tologies to be potentially reused: their categorization power, i.e. its suitability
for assigning meaningful categories – not necessarily expressed as named classes
but possibly in the form of compound concept expressions – to individual domain
objects (instances). Namely, many tasks related to the management of ontolog-
ically described data refer to detailed categorization of objects: companies may
provide specific offers to different categories of customers, buyers may only be in-
terested in specific categories of products, and the like. Reusing a categorization
structure pre-existing in a widespread vocabulary (or one with potential for fu-
ture widespread, e.g., cataloged in a respected collection such as LOV1 [9]) may

1 http://lov.okfn.org/



not only save a part of the design effort but also allow to better interface with
other applications, e.g., in federated querying or concerted recommendation. We
therefore hypothesize that ontologies providing more subcategories for classes
important in the given use case – to be called focus classes in our approach –
would be a more desirable subject of reuse, as whole or in (relevant) part.

To informally introduce the key concepts of our approach (more formally
grounded in Section 2), let us start with a toy ontologyO2 as motivating example:

Class: Person

Class: Man SubClassOf: Person

Class: Woman SubClassOf: Person

Class: MarriedMan EquivalentTo: Man and hasSpouse some Thing

Class: ProductivePerson

EquivalentTo: Person and insuranceCategory some {Enterpreneur,Employed}

Class: Country

ObjectProperty: hasSpouse Domain: Person Range: Person

ObjectProperty: bornIn Domain: Person Range: Country

ObjectProperty: insuranceCategory Domain: Person

Range: {Enterpreneur,Employed,Child,Retired}

DataProperty: zipCode Domain: Person Range: string

Individual: UK Types: Country

Individual: Italy Types: Country

Let us assume we want to build a rich ontology for categorizing persons and
need to assess if O is a good reuse candidate. Class Person (possibly discovered
by lexical search via an ontology search engine) thus becomes our focus class,
FC, in O. A simple quantification of the categorization power of O wrt. Person
could be 4, i.e. the sum of its asserted and inferred subclasses. However, the enti-
ties from O can be assembled to many compound expressions containing a subset
of Person instances, such as: insuranceCategory value Retired, hasSpouse
some Thing, or Woman and bornIn value Italy. We can imagine that some
of these have only been ‘refused entry’ to the named class ‘elite’ (the concept
signature of O) due to stringent parsimony or even sloppy modeling. On the
other hand, some structurally similar compound expressions are unsuitable for
categorizing persons. For example, bornIn some Thing does not refine Person

in any way, while insuranceCategory value Child and insuranceCategory

value Retired is void. Furthermore, complex conjunctions and especially dis-
junctions, although possibly containing adequately large subsets of the extent of
the focus class, might be mentally too complex to grasp.

For both named subclasses of FC and compound expressions from the for-
mer group (for which it would not surprise us to see them transformed to named
classes) we propose the term ontologistic category. We use this adjective to make
distinction from the notion of ‘ontological category’: while ‘ontological’ would
refer to ‘category of beings that exists’ (i.e. we cannot deny the existence of
categories with complex, unintuitive descriptions or with very small sets of in-
stances), ‘ontologistic’ refers to a category plausible as reusable domain concept

2 In Manchester OWL syntax, http://www.w3.org/TR/owl2-manchester-syntax/.



to a human ontologist. Intuitively, we should primarily derive the categorization
power of an ontology with respect to FC from the set of ontologistic categories
rather than from that of all possible concept expressions.

The approach taken in this paper and reflected in its structure is: to create
the overall framing of the focused categorization task (Section 2); to choose
a restricted (finite and easily manageable) concept expression language and a
map it to syntactic axiom patterns (Section 3); to verify the occurrence of the
patterns in ontology collection/s (Section 4); to check on a sample of pattern
instances if and under what conditions their respective concept expressions are
‘ontologistically’ plausible (Section 5). We also provide an overview of related
research (Section 6) and summary conclusions with future work prospects.

2 General Model of Ontologistic Categorization Power

Let PS(FC,O) be the set of concept expressions (CEs) that are proper special-
izations of named class FC with respect to ontology O:

PS(FC,O) = {CE;O |= (CE @ FC)}

Then focused ontologistic categorization power (FOCP) of O with respect to FC
could theoretically be defined as

FOCP (FC,O) = |CE;CE ∈ PS(FC,O) ∧ oc(CE)|

where the binary function oc returns true if the CE in its argument is an ontolo-
gistic category (OC). Obviously, such a definition would be anything but rigorous
and operational. First, PS(FC,O) will be infinite in common OWL DL dialects,
e.g., considering concept expressions nesting with unlimited depth. Second, the
concept of ontologistic category, as outlined in the introduction (and exemplified
later in this paper) is fuzzy, context-dependent and subjective. For practical pur-
poses we thus need to 1) restrict the language L of the CEs, to assure PS(FC,O)
finiteness, and 2) approximate the ‘typical’ result of oc (as returned by human
oracles in various contexts) by a formula based on measurable features of the
CEs. In this paper we only consider boolean features, namely, the presence of
axiom patterns, mapped on the CEs, in O.

Let an FC-matching axiom pattern3 be a set of OWL axioms with placeholder
variables (for concepts, roles and individuals), such that one of them, in concept
position, is the FC-variable (to be substituted by FC in pattern matching). For
example, a simple axiom pattern could be C rdfs:subClassOf FC.

Let a pattern-CE mapping function m be a function that takes an n-tuple of
entities substituted for variables (other than the FC-variable) in one instantiation
of a pattern p and returns the corresponding CE of a certain type t, provided
(optional) pruning constraints prunt associated with this type are satisfied. The

3 From now on simply ‘axiom pattern’, since no other kind of axiom pattern is referred
to in the paper.



CE types are understood in the context of the categorization task (having 1-to-1
mapping to patterns) and conform to the CE language L.

The set of patterns used for FOCP computation, together with their map-
ping functions, should satisfy some requirements: 1) they should assure that the
resulting CE is a subconcept of FC (e.g., the ‘subclass’ pattern above satisfies
this trivially), and, 2) the occurrences of two different patterns should not yield
the same CE (to assure unique counting). We should further, using a description
logic (DL) reasoner and/or syntactic pruning constraints, omit CEs that are ei-
ther unsatisfiable or equivalent to FC. An open question is whether we should
only count logically equivalent (though syntactically different) expressions once.
While trivially derivable equivalent concepts such as double negations should
be avoided, dissimilar expressions only alignable via complex derivations might
have descriptive value of their own. Since the CE language chosen in this paper
only covers a small subset of OWL (e.g., without negation and Boolean connec-
tives in general), we tolerate multiple equivalent expressions entering the FOCP
computation.

If the above pattern were instantiated as Man rdfs:subClassOf Person, an
adequate m would take the substitution (Man/C) and return the CE Man, with
type t corresponding to ‘named subclass’. No pruning constraints would apply.

Let the occurrence function for pattern p wrt. FC, denoted as Occ(p, FC,O),
return the number of matches of p in O such that FC is substituted to all
occurrences of the FC-variable in p. In the body of Occ the axioms from p are
conjunctively interpreted, together with the associated pruning constraints. The
matches correspond to the n-tuples submitted to the mapping function m.

The approximate FOCP of O with respect to a pattern set P = {p1, ..., pn}
can then be defined as the weighted sum of the Occ function results in O,

F̂OCP (FC,O,L, P ) = Occ(p1, FC,O) ∗ w1 + ...+Occ(pn, FC,O) ∗ wn

where wi ∈ [0, 1] is the weight of pattern pi indicating the likelihood that its
occurrence would produce an OC.

3 Concept Expression Language and Axiom Patterns

For the remainder of this paper we restrict the language of CEs as defined by
the following, extremely simple grammar, guaranteeing finiteness for any finite
ontology signature:

CE := namedClass | simpleExistentialRestriction | valueRestriction

simpleExistentialRestriction := objectProperty ’some’ namedClass

valueRestriction := objectProperty ’value’ individual

When considering the types of CEs corresponding to this ad hoc language (fur-
ther called L0), we specifically cater for the top concept (Thing) in the role of
existential restriction filler. Therefore the CE types are eventually four, as shown
in Tab. 3. The second column displays the CE structure in DL notation; C stands



Type. CE in DL Subst. Abox path length Axiom pattern size

t1 C C 3 1
t2 ∃R.> R 2 1
t3 ∃R.C R, C 5 3
t4 ∃R.{i} R, i 3 4

Table 1. Summary of CE types in L0

for named concept (class), R for role (object property) and i for individual. We
see that t2 and t4 are mere refinements of t3 (generic existential restriction) in
DL terms. The third column indicates which symbols from the CE correspond
to variables substituted in the associated axiom pattern. The set of variables
in t2 is subset of those of t3 and t4; if we consider one or more CEs for t3 or
t4 with some R then we should also consider the CE for t2 with this R. The
fourth column measures the length of Abox path (as sum of resource nodes and
predicate edges) connecting the categorized individual with entities (‘responsi-
ble’ for the categorization) substituted for variables from the third column: it
is smallest for t2 where only the adjacent edge is applied; t1 and t4 require a
whole triple (instantiation or property assertion, respectively), while t3 needs
two triples (both assertion and the ensued instantiation to the ‘filler’ class). The
order of the patterns in the table however reflect the increased complexity of
their detection in the Tbox using the proposed axiom patterns (fifth column),
which we detail in the next subsection.

3.1 Syntactic axiom patterns in the ontology schema

The CEs in L0 could in principle be mapped to diverse constellations of axiom
patterns with varying expressiveness. However, we implement the patterns pri-
marily in RDFS terms, namely, over rdfs:subClassOf, rdf:type, rdfs:domain
and rdfs:range axioms, such that all of their arguments are either atomic
expressions or variables for which they can be substituted; we so far avoided
rdfs:subPropertyOf to keep the pattern structure simpler (we will consider
adding it in the future). Besides the patterns also address the pruning of CEs
whose ineligibility follows from the ontology structure. The patterns (p1,..,p4)4

are pairwise mapped on the previously defined CE types (t1,..,t4), except that
for t4 we also supply an additional pattern p5 in which the individual i is not
part of the ontology itself but of an associated SKOS codelist. Since the pattern
occurrence is to be computed specifically with respect to the entities responsible
for categorization (third column in Tab. 3), we present the patterns in terms of
their occurrence function Occ(p#, FC).5

4 We denote these specific patterns using normal font, to differentiate with the super-
script notation (pi) of abstract symbols in Section 2.

5 For simplicity we omit O in the formula; the identity of the ontology follows from
the FC it contains. We also avoid the use of DL notation and express the OWL



Pattern p1 CEs of type t1 are simply subclasses of FC, i.e. they are matched by
the previously mentioned axiom pattern; the occurrence function is the number
of these subclasses:

Occ(p1, FC) = |{C; C rdfs:subClassOf FC}| (1)

The subclasses can be both direct or indirect, and possibly even inferred using
other kinds of axioms, i.e. they are subclasses of FC in the deductive closure of
the ontology computed by a reasoner.

Pattern p2 Next we will consider properties having FC in their domain:

Occ(p2, FC) = |{P ; P rdfs:domain FC ∧ P /∈ prun2(FC)}| (2)

where prun2(FC) is the set of properties that have to be pruned as ineligible
for this pattern. Again, even cases when FC is inferred as domain of P are
considered. Since we do not take into account the right-hand side of P , each
corresponding CE (of type t2) would contain all instances of FC that appear in
the subject of a triple with P as predicate. The corresponding mapping function
m thus maps the pattern on the DL expression ∃P.> (t2 in Table 3, with P
substituted for R). prun2(FC) essentially contains the properties P that appear
in an existential restriction6 FC v ∃P.C; for such properties the CE would
contain all instances of FC.

Pattern p3 Now we proceed to the range of properties with FC in domain and
then to the subclasses of this range:

Occ(p3, FC) = |{(P,C); ∃D P rdfs:domain FC ∧ P rdfs:rangea D ∧
∧ C rdfs:subClassOf D ∧ (P,C) /∈ prun3(FC)}| (3)

where prun3(FC) is, again, the set of properties that have to be pruned as
ineligible for this pattern. The CE (of type t3) would include all instances of FC
that appear in the subject of a triple with P as predicate and some i as object
such that i is instance of C. The inferential closure is again used, however,
with the exception of the range axiom, which is only considered as asserted
(therefore the ‘a’ index in rdfs:rangea) – otherwise not only subclasses of D
but also classes having a common superclass7 with D would be returned as C.
The pattern maps on the DL expression ∃P.C (t3). prun3(FC) contains the pairs
(P,C) that appear in an existential restriction FC v ∃P.E such that E v C;
for such properties the CE would contain all instances of FC.

axioms using predicate URIs, to avoid collision with general math notation. The
only reference to beyond-RDFS construct is the value restriction for p5.

6 The restriction can also be inherited from a superclass or part of a complete defini-
tion, or can have the form of a value or self restriction or of a cardinality restriction
that specializes the existential one; analogously for other prunn’s below.

7 This superclass would become an inferred range of P .



Pattern p4 This pattern extends the previous one with an individual that is
instance of C:

Occ(p4, FC) = |{(P, i); ∃C,D P rdfs:domain FC ∧ P rdfs:rangea D ∧
∧ C rdfs:subClassOf D ∧ i rdf:type C ∧ (P, i) /∈ prun4(FC)}| (4)

where prun4(FC) is analogous to the previous variants. The CE (of type t4)
would include all instances of FC that appear in the subject of a triple with P
as predicate and (the specific individual) i as object. The inferential closure is
used as before. The pattern maps on the DL expression ∃P.{i} (t4). prun4(FC)
contains the pairs (P, i) that appear in an existential restriction FC v ∃P.E
such that i ∈ E; for such properties the OC would contain all instances of FC.

Pattern p5 SKOS is the most widespread alternative to OWL to consider when
specifying simpler ‘ontological’ taxonomies. This variant thus extends the previ-
ous one for a specific source of instance i – a SKOS code list (concept scheme):

Occ(p5, FC) = |{(P, i); ∃s P rdfs:domain FC ∧
∧ P rdfs:rangea (skos:Concept u value(skos:inScheme, s)) ∧

∧ i skos:inScheme s ∧ i rdf:type skos:Concept ∧ (P, i) /∈ prun4(FC)}|
(5)

where value(skos:inScheme, s) shortcuts the DL concept expression ∃Q.{s}
such that Q =skos:inScheme. The CE (again of type t4) is defined as in Pattern
4. The difference is merely in the selection method for i – rather than instance of
a class from the current ontology, it has to be a skos:Concept linked to concept
scheme s that is in the range of P . The inferential closure is used as before.

With respect to the requirements on axiom patterns from Section 2, all pat-
terns assure (p2–p5 via the domain axiom) that the mapped CE is a specialization
of the FC. It is also easy to see that the patterns, except p4 vs. p5, are mutually
exclusive since they produce structurally different CEs. (Formally, to assure ex-
clusivity of p2 and p3, D in p3 should not be owl:Thing. We however do not
anticipate that explicit range axioms would have the default value Thing.)

4 Survey on Syntactic Pattern Occurrence

The research questions to be answered by the analysis were:

1. How many ontologies, and for how many FCs, provide a decent number of
‘categorizing’ CEs mapped on the patterns from Section 3.

2. What are the differences in the occurrence of the individual patterns overall
and across different collections.

For our experiments we used two collections of ontologies. First is a small
collection from the domain of conference organization, called OntoFarm,8 and

8 http://owl.vse.cz:8080/ontofarm/



the second is the collection from Linked Open Vocabularies (LOV) portal.9 While
the former is rather an experimental collection of ontologies (used, among other,
in the Ontology Alignment Evaluation Initiative10) with heterogeneous styles
and relatively rich in axioms, the latter contains real-world (mostly) light-weight
ontologies with connection to the Linked Open Data Cloud. In the analysis we
made use of our Online Ontology Set Picker framework11 to process ontologies
from two collections. OntoFarm has 16 ontologies, and for LOV we used January
2016 snapshot where 529 ontologies were available of which we could process
successfully 509 at syntactical level.

In the rest of the section we report on the summary as well as selected detailed
results of the axiom pattern occurrence analysis; separately for the four patterns
and for the fifth (‘SKOSsy’) pattern.12

Patterns p1, p2, p3 and p4 We matched the five patterns described in Sec. 3,
including the pruning operation, on each ontology (together with its imports).

Fig. 1 depicts the histogram of F̂OCP for weights set to 1, i.e. as a plain sum
of pattern occurrences,13 for p1, p2 and p3 in the cmt ontology from Onto-
Farm (neither p4 nor p5 are matched in this ontology). Cmt has 29 classes.
We see that there are 10, 15 and 15 focus classes (FCs) having at least one
match of p1, p2 or p3, respectively. This ontology has four levels. As expected,
FCs with higher categorization power are placed closer to the root (even for
p2 and p3 where this is not entailed straightforwardly). For p1 there is the fol-
lowing order of FCs: Person, ConferenceMember, User, Document, Paper, Au-
thor, Decision, ProgramCommitteeMember, Review, Reviewer. For p2 there is
the following order of FCs: Person, User, ConferenceMember, Document, Ad-
ministrator, Conference, Paper, Reviewer, ProgramCommitteeMember, Author,
Co-author, ProgramCommittee, Review, ProgramCommitteeChair, Bid. For p3
there are the same FCs as for p2 but their order is slightly changed. In all, six

of the FCs with nonzero F̂OCP are top-level classes: Person, Document, Deci-
sion, Conference, ProgramCommittee and Bid. There are four FCs from third
level: Author, ProgramCommitteeMember, Administrator and Reviewer Only

one FCs, Co-author, is a leaf class. All other FCs with nonzero F̂OCP are from
the second level of the taxonomy.

In order to provide aggregate results we counted the pattern occurrences
across the FCs for all classes of all ontologies. We summed up these results at

ontology level by identifying ‘categorizable FCs’ for which the F̂OCP reached
some threshold τ (1, 3 and 5) for patterns p1,..,p4;14 see Table 2 for OntoFarm
and Table 3 for LOV. They show the percentage of ontologies for which more

9 http://lov.okfn.org/
10 http://oaei.ontologymatching.org/
11 http://owl.vse.cz:8080/OOSP/
12 Supplementary material is at http://owl.vse.cz:8080/EKAW2016/
13 This is the (degenerated) version of F̂OCP we will use throughout this section. It

is only in the end of the paper that we formulate a ‘smarter’ one.
14 Pattern p5 was only matched rarely; it is thus analyzed separately below.



Fig. 1. Histogram of approximate FOCP for cmt ontology (all wi set to 1)

than a n portion (quantized by 0.1) of FCs are ‘categorizable FCs’ according
to the given pattern. For example, from Fig. 1 we can see that cmt would be
included in the OntoFarm percentage, for τ = 5, up to n > 0.1 in V1 (as 4 of
the 29 classes are ‘categorizable’) and up to n > 0.2 in V2 and V3.

Table 2. OntoFarm: ratio of ontologies with over n portion of classes ‘categorizable’

Pattern τ > 0.0 > 0.1 > 0.2 > 0.3 > 0.4 > 0.5 > 0.6 > 0.7 > 0.8 > 0.9

1 100.0 % 100.0 % 81.3 % 25.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %
p1 3 100.0 % 100.0 % 18.8 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %

5 93.8 % 31.3 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %

1 100.0 % 93.8 % 56.3 % 31.3 % 25.0 % 6.3 % 6.3 % 6.3 % 6.3 % 0.0 %
p2 3 100.0 % 43.8 % 25.0 % 12.5 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %

5 93.8 % 37.5 % 6.3 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %

1 93.8 % 50.0 % 18.8 % 6.3 % 6.3 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %
p3 3 93.8 % 50.0 % 12.5 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %

5 93.8 % 31.3 % 6.3 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %

1 25.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %
p4 3 18.8 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %

5 6.3 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %

Comparing the results in Table 2 and Table 3 we can see that proportionally
more OntoFarm ontologies provide some categorization options (i.e. CEs) for at
least some focus classes. In the case of pattern p4 considering τ = 3 and τ = 5
LOV ontologies provide proportionally slightly more ontologies with categoriza-
tion by instances. Since by nature LOV ontologies are ‘data schemes’, instances
are more typical there than in OntoFarm ontologies. Interestingly, OntoFarm on-
tologies fail to provide categorization options for more than 40% of their classes,
considering τ = 3. On the other side, there are always some LOV ontologies
providing categorization options for almost all of their classes regarding pattern
p2, and for at least 60% or 40% of their classes regarding patterns p1, p3 and
p4.

Table 4 shows the average F̂OCP across FCs separately for each OntoFarm
ontology. The highest average per pattern is in bold. The OpenConf ontology
has the highest average for categorization by subclasses, i.e. pattern p1; this can
be attributed to its rich multi-level subsumption hiearchy. The highest average



Table 3. LOV: ratio of ontologies with over n portion of classes ‘categorizable’

Pattern τ > 0.0 > 0.1 > 0.2 > 0.3 > 0.4 > 0.5 > 0.6 > 0.7 > 0.8 > 0.9

1 80.9% 74.5% 48.7% 24.2% 10.2% 2.8% 0.6% 0.2% 0.0% 0.0%
p1 3 63.7% 44.4% 10.2% 1.2% 0.2% 0.2% 0.2% 0.0% 0.0% 0.0%

5 53.2% 22.8% 1.0% 0.2% 0.2% 0.2% 0.2% 0.0% 0.0% 0.0%

1 85.7% 75.0% 63.7% 48.3% 35.0% 21.0% 14.9% 9.0% 4.3% 1.8%
p2 3 77.0% 56.4% 31.6% 15.7% 7.9% 3.9% 1.6% 0.6% 0.6% 0.4%

5 64.2% 35.6% 15.9% 6.7% 2.9% 1.6% 0.8% 0.4% 0.4% 0.2%

1 50.5% 24.4% 11.6% 5.1% 2.8% 1.6% 1.2% 0.8% 0.2% 0.0%
p3 3 43.4% 17.9% 7.7% 2.6% 1.6% 0.8% 0.4% 0.2% 0.0% 0.0%

5 35.8% 12.8% 4.7% 1.4% 1.2% 0.6% 0.4% 0.0% 0.0% 0.0%

1 23.0% 8.1% 3.3% 1.6% 1.0% 0.4% 0.0% 0.0% 0.0% 0.0%
p4 3 18.9% 5.1% 2.6% 0.8% 0.6% 0.2% 0.0% 0.0% 0.0% 0.0%

5 16.5% 4.7% 2.6% 0.8% 0.6% 0.0% 0.0% 0.0% 0.0% 0.0%

for categorization by properties, patter p2, is in cmt. This can be explained by
the fact cmt has more properties than classes (59 vs. 29) and there are few com-
plete or partial definitions. Iasted features the highest average of categorization
by classes in range, pattern p3. It has a rich multi-level hierarchy and there
are often general classes in range of its properties. Finally, OpenConf also has
the highest average of categorization by instances. The designer of this ontol-
ogy applied a specific modeling style with enumerated classes whose instances
serve for categorization, e.g., of papers or reviews. Only three other ontologies
feature nonzero average for pattern p4. On the supplementary webpage we fur-
ther provide a similar table for LOV, the complete list of FCs for each ontology
from OntoFarm and LOV, and finally, we provide the list of top 3 FCs for each
pattern.

Table 4. Average of axiom pattern matches

ontology p1 p2 p3 p4 ontology p1 p2 p3 p4

cmt 1.43 4.30 3.37 0 confOf 1.15 0.51 0.92 0.00
MyReview 0.77 2.36 1.85 0.1 sigkdd 1.08 0.56 0.86 0.00
edas 1.22 0.57 1.3 0 Conference 1.67 1.62 1.82 0.00
ekaw 2 0.38 3.08 0 confious 1.11 0.51 2.19 0.12
crs dr 0.71 2.14 0 0 PCS 1 2.08 1.79 0.00
paperdyne 0.93 1.33 0.87 0 iasted 1.95 0.26 4.09 0.00
linklings 0.78 0.32 0.22 0 OpenConf 2.19 1.55 1.11 0.19
MICRO 0.84 0.63 0.56 0.13 Cocus 1.16 0.55 2.45 0.00

Pattern p5 Finally, we performed an analysis of ontologies which use SKOS
concepts for entity categorization (pattern p5 ). OntoFarm ontologies do not



feature this pattern. Regarding LOV, there are 7 ontologies out of 509 which
enable users to apply this categorization. Table 5 contains information about
those 7 ontologies regarding number of all SKOS concepts that can be used
for categorization and number of all schemes from which those concepts come.
Further, there is information about the date of last modification. In two cases,
concept schemes are not available. For other ontologies the number of SKOS
concepts (SKOS schemes) usable for categorization varies from 11 to 274 (from
1 to 16, resp.). Although this is not present in many ontologies, we can assume
that this practice will appear more often in future as those seven ontologies were
modified on average in 2014 while average of modified date for the whole LOV
is 2012.

Table 5. Entity categorization power via SKOS concepts (pattern p5)

vocabulary nr. of schemes nr. of all concepts modified
http://www.loc.gov/premis/rdf/v1 16 79 2012-09-14
http://purl.org/procurement/public-contracts 4 86 2012-10-10
http://data.ign.fr/def/geofla 1 NA 2015-01-11
http://datos.gob.es/def/sector-publico/organizacion# 3 NA 2015-02-19
http://data.ign.fr/def/topo 13 274 2014-04-12
http://contsem.unizar.es/def/sector-publico/pproc 3 11 2015-01-11
http://rdf.insee.fr/def/geo 3 30 2015-01-11

Generally, the research questions from the start of the session have been
answered in the sense that: 1) The proportion of ontologies exhibiting ‘catego-
rizable’ FCs is neatly displayed in Tab. 3 (for LOV as large and representative
collection). Overall, the majority of ontologies have ‘interesting’ categorization
power for some of their classes as FCs; however, if we require more than 20-
30 % of classes to be ‘categorizable’, the proportion of ontologies satisfying this
requirement is rapidly dropping. 2) There are important differences in the pro-
portion of pattern occurrence, with p2 being most widespread, followed by p1.
This also holds for the smaller OntoFarm collection, which is structurally richer
than (on average) the LOV; however, as appears, the richer axiomatization only
allows for a smaller proportion of ontology classes to be categorized, possibly by
the effect of CE pruning.

5 Ontologistic Categorization Experiment

The CE sets on which the pattern occurrence counts are obtained by automated
analysis are mere rough approximations of the true OC sets for the respective
FCs. In order to get finer insights, we proceeded to detailed investigation of
sample CEs by human ‘ontologists’, both experts and relative novices (students
of relevant subjects). Since we take named (sub)classes as OCs by default, we
only examined the CEs of t2, t3 and t4 (we did not further distinguish between



the t4 variant returned by pattern p4 and by the ‘SKOSsy’ p5). The general
research questions, this time, were:

1. Is the OC status of CEs correlated with the CE type and/or the background
of the human assessor?

2. What is the proportion of clear vs. borderline cases?
3. Which deeper semantic distinctions either lead to negative assessment (even

in absence of logical causes for such assessment) or make the decision tricky?

We report on the most interesting results of this effort below.15

Initial sampling As regards the CE sampling for both threads of analysis (ex-
pert/novice), we used the same collections as in Section 4, i.e. OntoFarm and
LOV. From each collection 10 CEs per type have originally been randomly sam-
pled, yielding 80 CEs. After manual removal of duplicities (for OntoFarm as
smaller collection) and CEs containing entities with cryptic names, 59 CEs re-
mained (28 from OntoFarm and 31 from LOV); there were 17 CEs of t2 (exis-
tential restriction with ‘filler Thing’), 20 of t3 (existential restriction to specific
class), and 22 of t4 (value restriction).

Expert ontologist assessment and insights. The analysis has been done by the
three authors of the paper, all with 10–20 years of experience in ontological
engineering. They first examined the sample of 59 CEs independently and as-
sessed it on the 5-point Likert scale: for each CE X the question “Is X an OC?”
was answered as either ‘certainly’, ‘perhaps’, ‘borderline’, ‘perhaps not’ or ‘cer-
tainly not’. Then a consensus was sought in a F2F session. The independent
assessment had 76% agreement: in 45 out of 59 cases there was no contradictory
assessment (certainly/perhaps yes vs. certainly/perhaps no);16 we will call these
cases clear positives (43 cases, incl. the one used twice) and clear negatives (3
cases), respectively. The consensus session then yielded a complete consensus
on the remaining cases; in 12 out of the 14 ‘clash’ cases the final result was
‘yes’ (namely, a conceivable situation was formulated in which the CE would be
a plausible OC), one case was found dubious due to implausible inference (see
the second ‘insight’ below) and in one case the CE was assumed semantically
equivalent to its FC, both resulting into ‘no’. Of the seven ultimately negative
results, five were of t2, one of t3 and one of t4. Selected general insights into
less obvious decisions, with examples, follow (see the supplementary page for
complete assessments with commentaries):

– Ontologies tied to software applications, such as some OntoFarm ones (cap-
turing the processes supported by conference software) use object properties
to capture relationships that are only relevant within a short time frame, e.g.,
cmt:finalizePaperAssignment; a meaningful category of persons would
rather refer to their long-term responsibility for paper assignment rather
than to the instantaneous action of ‘finalizing’ it.

15 More detail can be found, again, at http://owl.vse.cz:8080/EKAW2016/.
16 For all these cases also held that out of the three assessments at least two had the

same polarity while the third was sometimes ‘borderline’.



– In some cases the use of inferential closure for the filler class in t3 leads
to linking relatively thematically unrelated entities (especially in the DBpe-
dia ontology), such as in dbo:beatifiedPlace some dbo:WineRegion for
instances of dbo:Person. While this case was found marginally acceptable
(there could be some correlation between religiosity and wine production),
a similar one, dbo:headChef some dbo:BaseballPlayer was rejected not
only due to thematic leap but also due odd inference result: the FC was
dbo:Village, the declared domain of dbo:headChef is dbo:Restaurant,
but the ontology (actually, the 2014 version from the LOV endpoint) en-
ables to infer the axiom dbo:Restaurant rdfs:subClassOf dbo:Village.

– Some CEs of t4 are plausible but less useful due to their inherently lim-
ited extent : for instance, categorizing instances of geopolitical:area as
geopolitical:isSuccessorOf value X, where X is another (geopolitical)
area.

Novice ontologist assessment. There were two groups of students involved: Bc-
level students in a course on Artificial Intelligence (AI) and MSc-level students
in a specialized course on Ontological Engineering (OE). Both courses provided
a certain degree of OWL modeling experience (in Protégé and Manchester syn-
tax) prior to this exercise, although OE went into more depth as regards the
underlying DL and reasoning. There were 17 AI students and 10 OE students
altogether. In both courses the students were first provided with a 30’ overview
of the notions of CE (in L0), OC and FC roughly as presented in Section 1 of
this paper. Then they completed an assignment consisting of 20 atomic tasks,
all available in a single sheet of a web questionnaire.17 In each atomic task the
student was required to provide an answer to the question “Is the class CE a
meaningful category for categorizing objects of class FC”, where FC was a named
focus class and CE was a concept expression in Manchester syntax. The answer
was again from the 5-point Likert scale, with an additional option ‘no judgment,
since I don’t understand the example’.

The 59 CEs from the initial sample were randomly divided into three ques-
tionnaire versions (one value restriction CE was used twice) to eliminate cribbing;
the numbers of returned questionnaires per version were 7, 9 and 11, respectively,
with balanced proportion of AI vs. OE students. To avoid protracting and bi-
asing the experiment, the students were instructed to only judge the CEs by
the expression itself, i.e. without consulting the respective ontology specification
or other external resources. However, specifically for the ‘conference’ domain of
OntoFarm, they were provided with a brief domain glossary (since as students
they were not expected to have experience with conference organization mat-
ters). In both sessions, 30’ sufficed to all students for completing the (20-task)
assignment.

We aggregated the results by questionnaire task, and then both by the course
and by CE type. The aggregation was carried out by simple summation over the

17 The questionnaire was in Czech. Its English translation is available from the paper
web page http://owl.vse.cz:8080/EKAW2016/.



values rescaled to the [−1; 1] interval (i.e. ‘certainly’ turned to 1, ‘perhaps’ to
0.5, both ‘borderline’ and ‘no judgment’ to 0, etc.), and then normalized by
dividing by the number of students on the task. This way, for example, a task
assigned to eight students, with the responses ‘certainly’, ‘perhaps’, ‘borderline’
and ‘perhaps not’, all present twice, yields the normalized sum (NS) of (2 ∗ 1 +
2 ∗ 0.5 + 2 ∗ 0 + 2 ∗ −0.5)/8 = 0.25. Follows a short digest of the results:

– The average NS over all 60 tasks was 0.07, i.e. rather low, although pos-
itive. Of the 60 NS values, 28 were positive, 5 zero and 27 negative. The
values strictly below 0.25 and above -0.25, possibly viewed as ‘borderline
aggregates’, were 34 (57%).

– The cases18 with highest positive and lowest negative values are in Table 6;
the type is listed in the third column. We see that cases with highest posi-
tive polarity tend to achieve higher absolute values than cases with highest
negative polarity, and that t4 dominates the upper end of the spectrum.
Interestingly, the negative cases correspond each to a different type and also
have different semantic roots: the village with baseball player head-chef was
already discussed before (distant and dubious inference), the ‘conference in
city’ one deals with a seemingly mandatory property leading to OC ≡ FC
(here, however, the experts’ consensual opinion diverged: how about future
editions not yet having a location, or virtual conferences?), and the ‘day
followed by Friday’ only holds for one individual, in turn.

– The average NS was higher for the OE students (0.12) than for the AI
students (0.04), which might be attributed to more developed ‘ontologistic
thinking’ of the latter. The inter-task variance,19 indicating the tendency
towards giving uneven values (averaged over the students filling the same
task) across the questionnaire, was about the same (0.16) for both courses.

– The average NS was highest for t4 (0.21, with 15 positives, 1 zero and 7
negatives), lower for t3 (0.02, with with 9 positives, 3 zero and 8 negatives)
and lowest for t2 (-0.05, with with 4 positives, 1 zero and 12 negatives).

In comparison with the ‘expert ontologist’ assessment:

– The students gave a significantly lower score: only about a half of CEs are
viewed as OCs, compared to 88% (52/59) by the final consensus of experts.
This can be explained by their lower ability to figure out specific situations
in which less obvious CEs might become plausible.

18 Most namespace prefixes used can be expanded using the prefix.cc service. Pre-
fixes unlisted by this service follow: p-act=http://purl.org/procurement/

public-contracts-activities#, p-aut=http://purl.org/procurement/

public-contracts-authority-kinds#, p1=http://www.loc.gov/premis/rdf/v1,
p1-sm=http://id.loc.gov/vocabulary/preservation/storageMedium#,
sigkdd=http://oaei.ontologymatching.org/2016/conference/data/sigkdd.owl

19 The intra-task variance, indicating the degree of agreement within the students filling
the same task, was computed and it is available from supplementary web page. It
will be included in the CR version.



Table 6. CEs with highest and lowest average NS of student scores

FC Expression Type Avg.NS

ofrd:FridgeFreezer ofrd:styleOfUnit value ofrd:SingleDoor 4 0.91
gr:BusinessEntity pco:mainActivity value p-act:GeneralServices 4 0.86
gr:BusinessEntity pco:authorityKind 4 0.61

value p-aut:LocalAuthority
akt:Generalized-Transfer akt:information-transfer-medium-used 4 0.59

value akt:Email-Medium
p1:Storage p1:hasStorageMedium value p1-sm:mag 4 0.59
fabio:Item fabio:isStoredOn value fabio:web 4 0.50
... ... ... ...
dbo:Village dbo:headChef some dbo:BaseballPlayer 3 -0.50
sigkdd:Conference sigkdd:City of conference some Thing 2 -0.56
gr:DayOfWeek gr:hasNext value gr:Friday 4 -0.56

– If we apply the same method of average NS computation on the initial as-
sessment of experts the proportion of ‘borderline aggregates’ between -0,25
and 0,25 is only 14% (in contrast to 57% for the students’ values).

– There is agreement on less frequent OC status of t2 (i.e. lower reliability of
pattern p2). Out of the 17 respective CEs, as mentioned above, only 4 were
viewed as OCs by students and 12 by the experts (who in turned judged all
CEs of other types, except two, as OCs).

– As regards the case-by-case comparison between students and experts, there
is also correlation in the sense that the 43 experts’ clear positives obtained a
positive average NS from students (0.14), while the 14 initially ‘clash’ cases
obtained a slightly negative average NS (-0.07) and the 3 negative cases
obtained a clearly negative average NS (-0.24).

As regards the research questions from the start of this section: ad 1) the OC
status assessment strongly depends both on the CE type and the expert/novice
distinction; ad 2) most cases are clear for experts but not for novices; 3) semantic
distinctions leading to negative or inconclusive assessment might be related to
temporality, inference over distant paths or inherently small cardinality of some
concepts (referring to the exemplified insights above).

A conclusion to be made with respect to FOCP computation is that t4 (value
restriction) and to some degree t3 (existential restriction) might successfully
complement t1 (named class) in the role of OC. As regards the relatively poor
performance of p2, it might be premature to completely abandon it at this phase,
since for some models it might yield the only unnamed CEs, as the analysis
from Section 4 indicates, and its contribution to the overall categorization power
should still be considered. A näıve weighted approximate FOCP formula for L0



and P = {p1, p2, p3, p4}, derived from the students’ assessment, could be

F̂OCP (FC,O,L0, P ) = Occ(p1, FC,O) ∗ 1.0 +Occ(p2, FC,O) ∗ 0.3

+Occ(p3, FC,O) ∗ 0.5 + (Occ(p4, FC,O) +Occ(p5, FC,O)) ∗ 0.7

where the numerical weight coefficients roughly correspond to the ratio of CEs
with positive average NS, per type.

6 Related Work

Since we are unaware of prior work on the same topic, we reference related
research that overlaps with ours at the abstract level (the notion of ‘classification
power’), systematically applies other kinds of metrics on ontologies, or addresses
similar application-level goals (ontology reuse or transformation) by other means.

The term classification/categorization power previously appeared in many
scientific texts, however, rarely as a rigorously defined notion. For example, on
many occasions, automated classifiers are reported to have certain ‘classification
power’ with respect to classes from an ontology, which is merely an informal cir-
cumscription of measures such as accuracy or error rate. The ‘power’ also clearly
pertains to the classifier and not to the ontology. Partially relevant is the analysis
made by Giunchiglia & Zaihrayeu [3], who categorized ‘lightweight’ ontologies
with respect to two dimensions: complexity of labels (simple noun phrases vs.
use of connectives and prepositions) and use of ‘intersection’ operator allowing to
combine atomic entities of different nature (e.g., the atomic concepts ‘Italy’ and
‘vacation’ implicitly combine into ‘vacation in Italy’). Maximal ‘classification
power’ is obtained when both explicitly complex labels and implicit concept
combinations are allowed. This however only applies to classifying documents
extrinsic to the ontology, since ‘intersection’ of concepts of different nature is
not coherent with the set-theoretic semantics of DL. Overall, their ‘classification
power’ is a global property of the method by which the ontology has been built.
In contrast, our notion of FOCP applies to individuals intrinsic to the DL world
of the ontology and is calculated with respect to a focus class.

As regards the analysis of ontology repositories in terms of various aggre-
gated features and metrics (logical, graph, lexical etc.), there has recently been
renewed interest, following up with the early work of Tempich et al. [8] (aiming
to build a benchmark for testing ontology tools). A large scale study of OWL
ontology metrics has been carried out by Matentzoglu et al. [5]. However, the
categorization power of ontologies has not been, to our knowledge, studied, never
mind with the flavor presented here.

Our own ongoing work on the PURO modeling language [7] deals with various
options how the same ‘background’ state of affairs can be expressed in OWL.
PURO structurally resembles OWL but relaxes some of its modeling constraints.
A library of transformation patterns allows to proceed from one PURO model
to alternative OWL ontologies in different encoding styles. An example relevant
to our case is the notion of enterpreneur, which is likely to be expressed as



type in PURO, but could be translated to relationship (insuranceCategory)
restricted to the Entrepreneur individual in OWL (i.e. a compound concept
expression). Analogously, born in may possibly be a relation in PURO but can
be translated not only to OWL property restrictions but also to named classes
such as PersonBornInUK, assuming we prefer an ‘encapsulating’ encoding style
used, e.g., in the DBpedia Ontology.20 Modeling in PURO and applying the
transformation patterns may thus make hidden OCs explicit in the domain. A
similar account of alternative ‘typecasting’ (but with smaller coverage) has been
given by Krisnadhi [4].

The broad context of our research, the task of ontology reuse, has been
studied by Schaible et al. [6]: the users expressed their preferences on reuse
strategy in a survey. The results indicate that reusing multiple entities from the
same vocabulary may often be preferred; this corroborates the relevance of our
approach to measuring the categorization power of ontologies with respect to
focus classes. Reuse support [2] is also systematically sought by the maintainers
of LOV [9], primarily at keyword relevance level; we are in contact with them
and will seek to integrate our complementary approaches.

7 Conclusions and Future Work

Ontologies are an important means of subcategorizing entities already known
to belong to a general focus class, and the scope of subcategories need not be
confined to named classes, especially in the linked data world, which is relatively
‘property-centric’. High categorization power of an ontology for certain classes
might serve as argument for reusing this ontology when building a new one,
or preparing a dataset scheme, if the notions corresponding to these classes are
important in the modeled domain. Additionally, plausible compound concept
expressions can be transformed to named ones if needed. Studying the role of
compound class expressions as meaningful (focused) categorization options thus
appears of high importance. In this respect we provided, to our knowledge, the
first systematic study on the categorization power of OWL ontologies covering
several compound concept expression patterns. The main contributions of the
paper (including oversize material swapped to an accompanying website) are: 1)
formulation of the problem and description of the pattern set; 2) empirical anal-
ysis of two ontology collections for (syntactical) pattern occurrence; 3) in-depth
ontologistic analysis of a sample of pattern occurrences, carried out both by
ontologistic experts (paper authors) and two groups of slightly trained students.

While the presented research focused on the general principles and empirical
analysis, aspects of it have also been implemented into our OOSP tool, allowing
to recommend ontologies with respect to their estimated FOCP.21 The estima-
tion currently does not distinguish between the CE types; it is however going

20 http://wiki.dbpedia.org/services-resources/ontology
21 This work has been published separately as a demo paper [11]. The demo paper only

contains a minimalist informal explanation of the notions of FC, CE and OC; apart
from that the content of the demo paper is disjoint with the current submission.



to be tuned by lowering the weight for instances of patterns exhibiting lower
proportion of plausible OCs, as indicated in Section 5.

As future work we plan to investigate if inclusion of additional types of con-
cept constructors into the L language could still yield relevant results (true
OCs) while keeping the computational complexity tractable. One candidate is
the inverseOf predicate: in some ‘modeling styles’ only one of the pair of mutu-
ally inverse properties is included in the ontology and some categorization tasks
might then be carried out against the direction of such a relationship.

In addition to the structural aspect of the CEs, we may also leverage on their
lexical aspects. Presence of suffixes such as -Category, -Type or -Kind in either
property or filler class names may indicate that the filler individual is actually
a type (note the highly scoring case with pco:authorityKind in Table 6).

We also envisage to align this schema-oriented analysis to data-oriented one.
If a representative sample of data is available for an ontology, we can of course
derive the OC status of CEs from the numbers of FC instances satisfying them
(or not), which can be obtained by a simple SPARQL query. This empirical
analysis will also allow us to refine the reliability estimate of the patterns (in
combination with ontologistic assessment as in this paper) and clues used in the
schema-oriented approach, which is usable even if instance data are not available.

In longer term, the goal is to embed a properly tuned ontology/fragment
recommender into our OBOWLMorph OE tool [1] and also make available via
an API to third-party tools such as the ProtégéLOV Plugin [2].

Ondřej Zamazal has been supported by the CSF grant no. 14-14076P, “COSOL –
Categorization of Ontologies in Support of Ontology Life Cycle”. Vojtěch Svátek
has been supported by the the UEP IGA F4/28/2016 project.
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